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Stabilization of quasiperiodic orbits for line-coupled diode resonator systems

Z. Yu, J. Steinshnider, C. L. Littler, J. M. Perez, and J. M. Kowalski
Physics Department, University of North Texas, Denton, Texas 76203
(Received 25 June 1993)

Chaotic transitions in line-coupled diode resonator systems were experimentally found to follow the
Curry-Yorke model [ The Structure of Attractors in Dynamical Systems (Springer, Berlin, 1977), p. 48].
The standard diode model from the computer program SPICE was used to simulate these systems; the
complete Lyapunov spectra from simulated systems are in good agreement with the spectra computed
from the experimental time series. By applying the proportional-feedback technique to these systems,
we can stabilize periodic orbits of increasing periods as well as unstable quasiperiodic orbits densely cov-

ering a torus.

PACS number(s): 05.45.+b

Soon after Ott, Grebogi, and Yorke [1] proposed a sta-
bilization scheme for unstable periodic orbits embedded
in a chaotic attractor, several experiments on different
dynamical systems were reported [2] where these ideas
were used to convert a chaotic attractor into a specific
generator  of  periodic signals  with period
T,2T,...,nT,. ... In particular, a single-diode resona-
tor circuit driven by an external harmonic signal has been
studied by Hunt [3]. The source of nonlinearity in the
system is a pn-junction diode. It is known that this sys-
tem becomes chaotic via a period-doubling route [4]. Us-
ing a modified stabilization scheme (called a
“proportional-feedback technique’”) Hunt was able to sta-
bilize periodic orbits up to period 23. It is also known
that higher-dimensional line-coupled diode resonator sys-
tems of this type can reach the chaotic state via a
different route through quasiperiodic regimes [5]. The
best known route of this type is the classical Ruelle-
Takens scenario: periodic solution — stable T (quasi-
periodic behavior with two incommensurate frequencies)
— stable T3 (three incommensurate frequencies) —»
chaos. However, as pointed out by Curry and Yorke [6],
direct transition from T to chaos is also possible.

Our experiments with line-coupled circuits and subse-
quent analyses of time series indicate that the Curry-
Yorke model describes the chaotic transition in these sys-
tems. To model the line-coupled system, we have used the
standard model of a diode as a nonlinear capacitance in
parallel with a nonlinear conductor as described in the
computer simulation program SPICE [7] (see the Appen-
dix). Calculations of Lyapunov spectra from experimen-
tal time series and spectra from the SPICE simulated sys-
tem are compared and found in good agreement. More
importantly, we show that the proportional-feedback
technique can be applied to stabilize unstable quasi-
periodic orbits in the experimental line-coupled systems
in addition to periodic orbits in the single-resonator sys-
tems.

The line-coupled system of two diode resonators is
presented in Fig. 1. The frequency of the driving signal
was typically set near the 50-KHz range. The voltage V,
across resistance R, was measured via a differential
amplifier with high input impedance. This voltage is con-
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sidered as a generic variable allowing one to reconstruct
the system’s dynamics by the well-known method of
embedding in the space of delayed signals [8]. We re-
stricted ourselves to continuous monitoring of two-
dimensional projections of orbits in the embedding space,
ie., we fed the output voltage V,(¢) and its copy
V(t +7) to two channels of an oscilloscope in the X-Y
mode. Additionally, a pulse generator was used to create
pulses at the peak positions of the driving signal. This
pulse generator consisted of a differentiator and a zero-
crossing detector. We used these pulses to strobe the Z
axis of the oscilloscope and thus display the Poincaré sec-
tions of phase plots. Time series data were taken by an
Analog Devices Model FAST-16 series digitizer with 16-
bit resolution, 1 MHz speed, and 1 M-word memory.

For an increasing amplitude of the driving signal with
fixed frequency f,=53.21 KHz the following sequence
has been observed. (1) For the driving amplitude
Vi, =6.07 V the system resides on a simple stable limit cy-
cle with frequency equal to the driving frequency
(period-1 “oscillations” of the system). (2) For 6.07 V
<V,=9.87 V the system has a quasiperiodic attractor
(two-dimensional torus). (3) For 9.87 V =V,=10.50 V
the system appears to be chaotic. (4) The chaotic regime
is followed by clear period-3 stable oscillations that occur
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FIG. 1. Schematic diagram of the line-coupled diode resona-
tor system. R, and R, are 50-Q resistors, L, and L, are 100-
mH inductors. The sinusoidal driving voltage was supplied by a
Tektronix Model SG 505 oscillator.
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for 10.50 V <¥;<13.00 V. The Poincaré section of the
system, experimentally obtained as described above, is
represented by three bright dots in Fig. 2(a). (5) Further
increase in the amplitude of the driving signal, when
13.01 V <V,;,<14.21 V, brings the system again to a
different two-frequency quasiperiodic attractor, with
period-3 windows as shown in Fig. 2(b). Poincaré sections
of these tori consist of three nearly circular closed curves,
centered on the three dots of the periodic orbit as in Fig.
2(a). The radii of the circles grow rapidly with increasing
amplitude of the driving signal. The power spectrum of
this regime is shown in Fig. 3(a), where one can identify
the fundamental frequency f, and another incommensu-
rate frequency f, with all other frequencies occurring at
linear combinations of f, and f, with rational multi-
pliers. The value of f slowly increases with an increase
of the amplitude V. (6) For yet higher driving ampli-
tudes, 14.25 V <V,;=<15.31 V, we observed frequency-
locked states, Fig. 2(c), with an orbit of high period
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residing on the torus. The Poincaré section initially con-
sists of three groups of dots falling on nearly circular
closed curves. These closed curves deformed away from
circles with increasing V,,. The power spectrum shown in
Fig. 3(b) shows that all peaks occur at frequencies
(p/q)f, where p and g are integers and a particularly
strong peak is observed at the period-3 positions. The
frequency-locking ratio is f/f;=3}. (7) Finally, with
further increase of the driving voltage (1540 V
<V,=<16.20 V) we again reached the chaotic regime,
shown in Fig. 2(d). The attractor still bears a resemblance
to that in the quasiperiodic regime, but the presence of
wrinkles and corrugations indicates that folding is taking
place. Broadband features, seen in the power spectrum
with period-3 windows, are shown in Fig. 3(c). This se-
quence of transitions agrees with the Curry-Yorke
scenario [6].

Additional evidence for the existence of chaotic and
quasiperiodic regimes can be provided, as usual, by

FIG. 2. Sequence of phase plot for the driving amplitude ¥, = 10.50 V, i.e., after the first transition to chaos. (a) Period-3 state.
(b) Quasiperiodic state. (c) Frequency-locked state. (d) Second chaotic state. These plots are pictures taken from the oscilloscope in
the X-Y mode, showing the voltage signal V,(¢) across R, vs the same signal V(¢ +7) with a certain time delay 7. The units of both

the X and Y axes are arbitrary.
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Lyapunov spectra. The direct -calculation of all
Lyapunov exponents from an experimental time series of
a single observable is a subtle numerical problem. Steady
progress in this area has been reported in recent years
[9-12]). We used a new algorithm developed by Kruel
and Eisworth [12] to study our dynamical system. Guid-
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FIG. 3. (a) Power spectrum of the quasiperiodic state shown
in Fig. 2(b). Here the two basic frequencies are f,, =50.22 kHz
and f;~4.43 kHz. (b) The power spectrum of the frequency-
locked state corresponding to the phase plot shown in 2(c). The

33 (c) The power spectrum of the chaotic state

locking ratio is -

corresponding to the phase plot shown in Fig. 2(d.

ed by the dimensionality of the phase space of the SPICE
simulated model we selected d =3 and 5 as embedding di-
mensions for a single diode circuit and a line-coupled sys-
tem, respectively. Data series we obtained from these sys-
tems are well behaved and singular-value decomposition
is unnecessary. The obtained spectra of our line-coupled
system for typical quasiperiodic and chaotic regimes are
listed in Table I. As emphasized by Kruel and Eisworth
[12], reliable exponent estimates must be stable in all pa-
rameters which enter the program. The two most impor-
tant parameters are €,,, the maximum distance to locate
the neighbors, and ¢, the evolution time. The ex-
ponents listed in Table I have plateaus when ¢, is in
the range of [0.01,0.08] and ¢.. in the range
[0.5X107%,9.0X 107 %]. The maximum variations of the
exponents with respect to the above two parameters are
entered as the error estimates. We also tried two other
algorithms developed by Wolf et al. [9] and by Bryant,
Brown, and Abrarbanel [11] for the same time series.
The positive exponents of the chaotic regimes and the
largest negative exponents were all in qualitative agree-
ment.

Less difficult, but by no means trivial, are the calcula-
tions of the complete Lyapunov spectra for a simulated
model system. In particular, error bars for calculated
values may be difficult to estimate and the obtained
values may show variations for changing parameters of
the algorithm. However, in our simulations we observed
high numerical stability of the results with respect to the
integration time. Using the diode characteristics model
as described in the SPICE program [7] we obtained a set of
differential equations with the parameters that match the
type of diode and circuit elements we used (see the Ap-
pendix for details). After numerical integration of these
equations using the Runge-Kutta method for the line-
coupled diode system, we found that an identical se-
quence of transitions, i.e., periodic solution -- quasi-
periodic solution 72— frequency-locked state -~ chaotic
state, occurs. Lyapunov spectra calculations based on
this model are listed in Table I for comparison with those

TABLE 1. Complete Lyapunov spectra of a quasiperiodic re-
gime and a chaotic regime calculated from both experimental
time series and SPICE simulated system for our line-coupled
diode resonator system.

Simulated
system

Experimental
time series

Quasiperiodic regime

—0.0038+0.0002 0.00
—0.0038+0.0006 —0.00175
—0.140+0.015 —0.100
—0.82£0.20 —3.25
—4.0%1.5 -3.27
Chaotic regime
+0.13+0.02 +0.0876
—0.00170=+0.00015 0.00
—0.45+0.08 -0.4
~1.2820.17 - 3.06
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obtained from the experimental time series. The agree-
ment between the estimated exponents from the experi-
mental data and those calculated from simulated system
is very good.

The control circuit we used employed the so-called
proportional-feedback technique as discussed by Hunt
[3]. The control circuit samples the current peaks, and
for all peaks within a preselected adjustable window the
difference between peak position and the center of the
window is computed, amplified with an adjustable gain,
and used as a control signal by a superimposition with
the driving sinusoidal signal. The time delay and duration
of the control signals are also adjustable parameters of
the control circuit.

Now we describe the results obtained by applying this
control circuit to a single-diode resonator circuit and to a
line-coupled diode resonator system. For a single-diode
resonator system we can easily stabilize low-period orbits
embedded within the chaotic attractors with appropriate,
broad adjustment of the control parameters as mentioned
above. The stabilization of high-period orbits is increas-
ingly more difficult (more precise multiparameter tuning
required), though we were able to stabilize orbits up to
period 17. These results confirm those obtained by Hunt
[3] with a somewhat different single-diode circuit and
control circuit.

For our line-coupled diode resonator system, we found
that the stabilization of high-period orbits is typically
easier than in the single-diode system. More importantly,
careful stabilization allows one to restore some of the
quasiperiodic orbits with two incommensurate frequen-
cies. From the point of view of Poincaré maps this obvi-
ously is equivalent to the stabilization of an unstable
periodic orbit in the Poincaré plane intersecting the at-
tractor. Figures 4(a) and 4(b) indeed show that the con-
trolled quasiperiodic orbit lies within the original attract-
ing set in the Poincaré plane, and the power spectrum in
Fig. 5(b) shows that the two incommensurate frequencies
are close to those observed in a previously stable quasi-
periodic regime. Just near the above control settings, we
have obtained a periodic-locked state from the same
chaotic attractor. Figure 4(c) shows the phase plot and
Poincaré section of this state and its power spectrum in
Fig. 5(c) shows that all the peaks are equally spaced. Sta-
bilization of quasiperiodic orbits was possible for a wide
variety of line-coupled diode resonator systems with
different elements (resistors and inductors) as well as
diode types.

We also applied the same control technique to a line-
coupled system consisting of four single-diode resonators.
This system has periodic, quasiperiodic, and chaotic re-
gimes. The stabilization of periodic and quasiperiodic or-
bits was also found to be possible, as shown in Fig. 6.

Control signals in the above cases were always small
when compared to the system signals (less than 5%). Un-
fortunately, we cannot provide a simple operational re-
cipe for the stabilization for all of the observed orbits
within Hunt’s technique. Both high periodic and ap-
parently quasiperiodic orbits are equally difficult to stabi-
lize, and we did not notice any specific difference in the
stabilization procedures for orbits of these two types.

FIG. 4. Phase plot of (a) typical chaotic attractor for 9.90 V
<V,=10.50 V, (b) stabilized quasiperiodic state, and (c) stabi-
lized periodic frequency-locked state. As shown in Fig. 2, these
plots are pictures taken from the oscilloscope representing V,(¢)
vs V,(t +7), and the units of both the X and Y axes are arbi-
trary.
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The orbits classified as quasiperiodic appeared less often
than the periodic ones, as may be expected. A word of
comment should be added on the observed quasiperiodic
orbits. Obviously, a strictly quasiperiodic orbit is an ex-
perimental and simulational impossibility (all measured
frequencies are commensurate, all simulated orbits are ul-
timately periodic). Additionally, a high periodic orbit
perturbed by a small amount of noise residing on a torus
will behave as an almost periodic orbit, which can be well
approximated by a quasiperiodic orbit. In this situation,
an experimental observation of quasiperiodicity must first
localize tori on which these orbits may live, and second
provide an example of an orbit which appears dense on
this torus. All of our high-period orbits clearly belong to
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FIG. 5. Respective power spectra for the dynamical regimes
of Fig. 4

some common tori, similar to those observed in the sys-
tem before the transition to chaos. Additionally, orbits
of period as high as 17 are still classified as such, which
indicates the relatively low noise level in the system.

In conclusion, systems of coupled, nonlinear diode os-
cillators have new interesting dynamical features when
compared to the single-diode resonator system. Direct
transition 72— chaos seems quite common in these sys-
tems. The chaotic regimes of these systems can be easily
controlled by the proportional-feedback technique. In
particular, it is possible to stabilize not only periodic but
also quasiperiodic orbits residing on tori. It is well
known that a typical chaotic attractor has embedded
within it an infinite number of unstable periodic orbits
[13]. Based on our stabilization experiments we conjec-
ture that the chaotic attractors for systems we have con-
sidered contain both unstable periodic and unstable
quasiperiodic orbits.

APPENDIX

The SPICE program models the diode as an ideal diode
in parallel with a nonlinear effective capacitor. The non-
linear differential capacitance is modeled as follows:

i

dl, » Vo
o+ C0) | 1—— |
D dl/n d E (b(; |
- égp _ for V; < Fpcdg
av, i, C,0) ‘ MV,
Pdv,  F, Yo |
for I/[) > 7pcib0 N

where F, and F are
Fy=(1—=Fe)'™™, Fy=1—Fpll+M) .
The ideal diode is modeled by
[1,(explgVp /nK) =114V, G
nkT

|
Ifor —5———=<V,=0
{p= q P

‘ nkT
| =1+ VpGhyy, for Vp<—5 P

min are all

Here 7, Fpc( =FC), C,4(0), M, ¢y, n, and G
SPICE constants depending on the diode type.
Ordinary differential equations for our line-coupled
diode resonator system in Fig. 1 are listed below. Here
the equations were solved using the Runge-Kutta
method. I is the current through R,, I, is the current
through R,, V,, and ¥V, are the voltages across the D,
and D, diodes, and ¥V, and f are the amplitude and fre-
quency of the driving source. Both resistances are set
equal to R, and both inductances are equal to L,
dl  VosinQ—V, —I(R,+R;)

. (A1)
dt L
dly, _ VosinQ—2V, +V,—1,(Ro+ R,) (A2)
dt I8
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FIG. 6. (a) Phase plot of a chaotic attractor from four line-coupled diode resonators. (b) Stabilized quasiperiodic state from the

above chaotic attractor. (c) and (d) are their

power spectra.
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FIG. 2. Sequence of phase plot for the driving amplitude ¥ = 10.50 V, i.e., after the first transition to chaos. (a) Period-3 state.
(b) Quasiperiodic state. (c) Frequency-locked state. (d) Second chaotic state. These plots are pictures taken from the oscilloscope in
the X-Y mode, showing the voltage signal V,(¢) across R, vs the same signal V(¢ +7) with a certain time delay 7. The units of both
the X and Y axes are arbitrary.
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FIG. 3. (a) Power spectrum of the quasiperiodic state shown
in Fig. 2(b). Here the two basic frequencies are f, =~50.22 kHz
and f;=~4.43 kHz. (b) The power spectrum of the frequency-
locked state corresponding to the phase plot shown in 2(c). The
locking ratio is i} (c) The power spectrum of the chaotic state
corresponding to the phase plot shown in Fig. 2(d).



FIG. 4. Phase plot of (a) typical chaotic attractor for 9.90 V
<V¥,=10.50 V, (b) stabilized quasiperiodic state, and (c) stabi-
lized periodic frequency-locked state. As shown in Fig. 2, these
plots are pictures taken from the oscilloscope representing V,(¢)
vs V,(t +7), and the units of both the X and Y axes are arbi-
trary.
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FIG. 5. Respective power spectra for the dynamical regimes
of Fig. 4.
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FIG. 6. (a) Phase plot of a chaotic attractor from four line-coupled diode resonators. (b) Stabilized quasiperiodic state from the

above chaotic attractor. (c) and (d) are their power spectra.



